Accelerator Mass Spectroscopy with the ATLAS Superconducting Linear Accelerator: An Ultrasensitive Forensic Tool: ## Track Material to Source by Unique Isotopic Ratio Measurement Identify reprocessing Activity ## Richard C. Pardo Argonne National Laboratory ATLAS Facility floor plan emphasizing the portions used in Accelerator Mass Spectroscopy Experiments ## Features of Accelerator Mass Spectroscopy (AMS) - Measure isotopic concentrations in small samples - Sample size: 1 to 10 mg - Excellent isotopic and isobaric discrimination - Ultrahigh material sensitivity - Detectable concentrations as low as 5X10⁻¹⁷ - At ATLAS, AMS has been developed for the isotopes ³He, ³⁹Ar, ⁴¹Ca, ⁵⁹Ni, ⁶⁰Fe, ²³⁶U and ²⁴⁴Pu. - Development of ⁸⁵Kr AMS is planned for the near future. ⁸⁵Kr AMS may be used to identify nuclear reprocessing activity. - The technique is also suitable for detection of ultra-small quantities of actinide elements, that are by-products of nuclear weapons production and power industries. - Actinide AMS may help identify the source of confiscated materials by comparing isotopic ratios in samples. | Radioisotopes for which AMS has been developed or is being developed at ATLAS | | | |---|-----------------------|-----------------------------| | Isotope | t _{1/2} (yr) | Isotopic Abundance | | | | Detection Limit | | ³⁹ Ar | 2.68×10^2 | 5×10^{-17} | | ⁴¹ Ca | 1.04×10^5 | 1.0 X 10 ⁻¹⁵ | | ⁵⁹ Ni | 9.2 X 10 ⁴ | 1.0 X 10 ⁻¹³ | | ⁶⁰ Fe | 1.50×10^6 | 1.0 X 10 ⁻¹³ | | ⁸⁵ Kr | 10.8×10^{1} | Under Development | | ^{236}U | 2.3×10^7 | 1.0 X 10 ⁻¹² | | ²⁴⁴ Pu | 8.1×10^{7} | 10 ⁸ total atoms | Position vs Energy Loss Spectrum in gas-filled magnettic spectrometer detector showing unique identification of ³⁹Ar from dominant ³⁹K stable background. Identification of ²³⁶U in focal plane detector of the ATLAS Fragment Mass Analyzer. Spectrum of Position (M/Q) vs Energy in Focal Plane Detector.